ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Design of AIEgens for Near-Infrared IIb Imaging Through Structural Modulation at Molecular and Morphological Levels

preprint
submitted on 22.11.2019, 02:18 and posted on 29.11.2019, 17:46 by yuanyuan li, Zhaochong Cai, shunjie liu, Haoke Zhang, sherman Wong, Jacky W. Y. Lam, Ryan Tsz Kin Kwok, Jun Qian, Ben Zhong Tang

Fluorescence imaging in near-infrared IIb (NIR-IIb, 1500-1700 nm) spectrum holds a considerable promise for tissue imaging with deep penetration and high spatial resolution owing to the minimized autofluorescence and suppressed photon scattering. While few inorganic NIR-IIb fluorescent probes have been reported, their organic counterparts are still underdeveloped, possibly due to the lack of efficient materials with long emission wavelength. Herein, we propose a new molecular design philosophy to develop organic NIR-IIb fluorophores with high quantum yield (QY) by manipulation of the effects of twisted intramolecular charge transfer and aggregation-induced emission at the molecular and morphological levels. A pure organic fluorescent dye emitting up to 1600 nm with a QY of 14.2% in the NIR-II region (1000-1600 nm) is developed. For the first time, NIR-IIb fluorescence imaging of blood vessels and deeply-located intestinal tract of live mice based on organic dyes is achieved. The results show that organic fluorophore performs superb imaging ability in both superficial blood vessels and internal organs with high resolution and enhanced signal-to-background ratio in NIR-IIb region. We hope this groundbreakingly study will inspire further research on the evolution of pure organic NIR-IIb probes for in vivo imaging.

History

Email Address of Submitting Author

shunjieliu@ust.hk

Institution

the Hong Kong University of Science and Technology

Country

China

ORCID For Submitting Author

0000-0003-1632-0183

Declaration of Conflict of Interest

no conflict interest

Exports