These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Description of Intermolecular Charge Transfer With Subsystem Density-Functional Theory

submitted on 21.08.2019, 13:41 and posted on 22.08.2019, 16:16 by Anika Schulz, Christoph R. Jacob
Efficient quantum-chemical methods that are able to describe intermolecular charge are crucial for modeling organic semiconductors. However, the correct description of intermolecular charge transfer with density-functional theory (DFT) is hampered by the fractional charge error of approximate exchange-correlation (xc) functionals. Here, we investigate the charge transfer induced by an external electric field in a tetrathiafulvalene--tetracyanoquinodimethane (TTF--TCNQ) complex as a test case. For this seemingly simple model system, a supermolecular DFT treatment fails with most conventional xc functionals. Here, we present an extension of subsystem DFT to subsystems with a fractional number of electrons. We show that within such a framework it becomes possible to overcome the fractional charge error by enforcing the correct dependence of each subsystem's total energy on the subsystem's fractional charge. Such a subsystem DFT approach allows for a correct description of the intermolecular charge transfer in the TTF--TCNQ model complex. The approach presented here can be generalized to larger molecular aggregates and will thus allow for modeling organic semiconductor materials accurately and efficiently.


Email Address of Submitting Author


Technische Universität Braunschweig



ORCID For Submitting Author


Declaration of Conflict of Interest



Logo branding