These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Decoupling Gas Evolution from Water-Splitting Electrodes

submitted on 13.08.2019, 16:05 and posted on 14.08.2019, 14:03 by Pablo Peñas, Peter van der Linde, Wouter Vijselaar, Devaraj van der Meer, Detlef Lohse, Jurriaan Huskens, Han Gardeniers, Miguel Modestino, David Fernandez Rivas

Bubbles are known to hinder electrochemical processes in water-splitting electrodes. In this study, we present a novel method to promote gas evolution away from the electrode surface. We consider a ring microelectrode encircling a hydrophobic microcavity from which a succession of bubbles grows. The ring microelectrode, tested under alkaline water electrolysis conditions, does not suffer from bubble coverage. Consequently, the chronopotentiometric fluctuations of the cell are weaker than those associated with conventional microelectrodes. Herein, we provide fundamental understanding of the mass transfer processes governing the transient behaviour of the cell potential. With the help of numerical transport models, we demonstrate that bubbles forming at the cavity reduce the concentration overpotential by lowering the surrounding concentration of dissolved gas, but may also aggravate the ohmic overpotential by blocking ion-conduction pathways. The theoretical and experimental insight gained have relevant implications in the design of efficient gas-evolving electrodes.


Email Address of Submitting Author


University of Twente



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest

Version Notes

V1 (submitted)