These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Deconstructing the Behavior of Donor-Acceptor Copolymers in Solution & the Melt: The Case of PTB7

submitted on 28.01.2019, 16:09 and posted on 29.01.2019, 15:53 by Sean M. Ryno, Chad Risko
For organic semiconductors, the solid-state packings of the π-conjugated molecules or polymers dictate the material electronic, optical, and mechanical characteristics. Combinations of solution and solid-state investigations are often used to establish structure–function relationships, though these connections are often loosely correlated, and experiments in different laboratories can lead to widely variable interpretations. Hence, there remains a need to develop a deeper, more robust understanding of the connections between molecular and polymer chemistry, structure, processing, solid-state order, and materials properties to enable judicious materials design principles. Towards this goal, we employ fully-atomistic molecular dynamics (MD) simulations of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b’]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7), a donor–acceptor copolymer that has been widely investigated in the organic solar cell literature, to unravel some of these associations. The MD simulations make use of polymer lengths (masses) and solution concentrations that are consistent with those used in experiment, allowing for a detailed picture to arise as to how variations in the polymer environment can direct polymer structure. Comparisons between experiment and theory suggest that processing history can be an important factor in the polymer structures presumed experimentally that are used to interpret optical and electronic response. The results of these simulations provide specific information into the behavior of PTB7 under different conditions, and showcase how atomistic MD simulations that approach experimentally relevant sizes can be used to develop broader chemical insight that can aid in the design, processing, and characterization of polymer-based organic semiconductors.




Email Address of Submitting Author


University of Kentucky



ORCID For Submitting Author


Declaration of Conflict of Interest

No conflicts to declare.


Logo branding