These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
main.pdf (5.18 MB)

Critical Benchmarking of the G4(MP2) Model, the Correlation Consistent Composite Approach and Popular Density Functional Approximations on a Probabilistically Pruned Benchmark Dataset of Formation Enthalpies

submitted on 13.07.2020, 15:24 and posted on 14.07.2020, 09:51 by sambit kumar das, Sabyasachi Chakraborty, Raghunathan Ramakrishnan
First-principles calculation of the standard formation enthalpy, $\Delta H_f^0$~(298K), in such large scale as required by chemical space explorations, is amenable only with density functional approximations (DFAs) and some composite wave function theories (cWFTs). Alas, the accuracies of popular range-separated hybrid, `rung-4' DFAs, and cWFTs that offer the best accuracy-vs.-cost trade-off have as yet been established only for datasets predominantly comprising small molecules, hence, their transferability to larger datasets remains vague. In this study, we present an extended benchmark dataset of over two-thousand values of $\Delta H_f^0$ for structurally and electronically diverse molecules. We apply quartile-ranking based on boundary-corrected kernel density estimation to filter outliers and arrive at Probabilistically Pruned Enthalpies of 1908 compounds (PPE1908). For this dataset, we rank the prediction accuracies of G4(MP2), ccCA and 23 popular DFAs using conventional and probabilistic error metrics. We discuss systematic prediction errors and highlight the role an empirical higher-level correction (HLC) plays in the G4(MP2) model. Furthermore, we comment on uncertainties associated with the reference empirical data for atoms and systematic errors introduced by these that grow with the molecular size. We believe these findings to aid in identifying meaningful application domains for quantum thermochemical methods.


Email Address of Submitting Author


Tata Institute of Fundamental Research Hyderabad



ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest