ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
8 files

Collagen Pentablock Copolymers Form Smectic Liquid Crystals as Precursors for Mussel Byssus Fabrication

preprint
submitted on 11.12.2020, 21:11 and posted on 14.12.2020, 12:57 by Franziska Jehle, Tobias Priemel, Michael Strauss, Peter Fratzl, Luca Bertinetti, Matthew Harrington
Protein-based biological materials are important role models for the design and fabrication of next generation advanced polymers. Marine mussels (Mytilus spp.) fabricate hierarchically structured collagenous fibers known as byssal threads via bottom-up supramolecular assembly of fluid protein precursors. The high degree of structural organization in byssal threads is intimately linked to their exceptional toughness and self-healing capacity. Here, we investigated the hypothesis that multidomain collagen precursor proteins, known as preCols, are stored in secretory vesicles as a colloidal liquid crystal (LC) phase prior to thread self-assembly. Using advanced electron microscopy methods, including scanning TEM and FIB-SEM, we visualized the detailed smectic preCol LC nanostructure in 3D, including various LC defects, confirming this hypothesis and providing quantitative insights into the mesophase structure. In light of these findings, we performed an in-depth comparative analysis of preCol protein sequences from multiple Mytilid species revealing that the smectic organization arises from an evolutionarily conserved ABCBA penta-block co-polymer-like primary structure based on demarcations in hydropathy and charge distribution, as well as terminal pH-responsive domains
that trigger fiber formation. These distilled supramolecular assembly principles provide inspiration and strategies for sustainable assembly of nanostructured polymeric materials for
potential applications in engineering and biomedical applications.

History

Email Address of Submitting Author

matt.harrington@mcgill.ca

Institution

McGill University

Country

Canada

ORCID For Submitting Author

0000-0003-1417-9251

Declaration of Conflict of Interest

I declare no conflict of interest

Exports