Chemoselective Electrosynthesis Using Rapid Alternating Polarity

12 April 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Challenges in the selective manipulation of functional groups (chemoselectivity) in organic synthesis have historically been overcome using either reagents/catalysts that tunably interact with a substrate or through modification to shield undesired sites of reactivity (protecting groups). Although electrochemistry offers precise redox control to achieve unique chemoselectivity, this approach often becomes challenging in the presence of multiple redox-active functionalities. Historically, electrosynthesis has been performed almost solely by using direct current (DC). In contrast, utilization of alternating current (AC) has been considered as an option to improve reaction efficiency rather than a way to achieve distinctly different reaction outcomes. Here we show how a unique type of waveform employed to deliver electric current – rapid alternating polarity (rAP) – enables control over reaction outcomes in the chemoselective reduction of carbonyl compounds, one of the most widely used reaction manifolds. The reactivity observed cannot be recapitulated using DC electrolysis or chemical reagents. The synthetic value brought by this new method for controlling chemoselectivity is vividly demonstrated in the context of classical reactivity problems such as chiral auxiliary removal and cutting-edge medicinal chemistry topics such as the synthesis of PROTACs.

Keywords

synthetic organic electrochemistry
carbonyl reduction
synthetic methods
chemoselectivity

Supplementary materials

Title
Description
Actions
Title
rAP-SI rxive
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.