Characterization of the Fe Metalloproteome of a Ubiquitous Marine Heterotroph, Pseudoalteromonas (BB2-AT2): Multiple Bacterioferritin Copies Enable Significant Fe Storage

10 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Fe is a critical nutrient to the marine biological pump, which is the process that exports photosynthetically fixed carbon in
the upper ocean to the deep ocean. Fe limitation controls photosynthetic activity in large regions of the oceans, and the subsequent degradation of exported photosynthetic material is facilitated particularly by marine heterotrophic bacteria. Despite their importance in the carbon cycle and the scarcity of Fe in seawater, the Fe requirements, storage and cytosolic utilization of these marine heterotrophs has been less studied. Here, we characterized the Fe metallome of Pseudoalteromonas (BB2-AT2). We found that with two copies of bacterioferritin (Bfr), Pseudoalteromonas possesses substantial capacity for luxury uptake of Fe. Fe:C in the whole cell metallome was estimated (assuming C:P stoichiometry ~51:1) to be between ~83 μmol:mol Fe:C, ~11 fold higher than prior marine bacteria surveys, that could support growth for at least 2.6 divisions in the absence of further Fe acquisition. Under these replete conditions, other major cytosolic Fe associated proteins were observed including superoxide dismutase (SodA; with other metal SOD isoforms absent under Fe replete conditions) and catalase (KatG) involved in reactive oxygen stress mitigation and aconitase (AcnB), succinate dehydrogenase (FrdB) and cytochromes (QcrA and Cyt1) involved in respiration. With the aid of singular value decomposition (SVD), we were able to computationally attribute peaks within the metallome to specific metalloproteins contributors. An Fe complex TonB transporter associated with the closely related Alteromonas bacterium was found to be abundant within the Pacific Ocean mesopelagic environment. Despite the extreme scarcity of Fe in seawater, the marine heterotroph, Pseudoalteromonas, has expansive Fe storage capacity and utilization strategies, implying that, within detritus and sinking particle environments, there is significant opportunity for Fe acquisition. Together these results imply an evolved dedication of marine Pseudoalteromonas to maintaining an Fe metalloproteome, likely due to its dependence on Fe-based respiratory metabolism.

Keywords

Iron, metallome, marine, heterotroph, metalloproteomics, bioinorganic, geochemistry, proteomics, alteromonas

Supplementary materials

Title
Description
Actions
Title
013020 Supplemental Materials
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.