ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

Catalytic Resonance Theory: Parallel Reaction Pathway Control

preprint
submitted on 08.11.2019 and posted on 15.11.2019 by M. Alexander Ardagh, Manish Shetty, Anatoliy Kuznetsov, Qi Zhang, Phillip Christopher, Dionisios Vlachos, Omar Abdelrahman, Paul Dauenhauer
Catalytic enhancement of chemical reactions via heterogeneous materials occurs through stabilization of transition states at designed active sites, but dramatically greater rate acceleration on that same active site is achieved when the surface intermediates oscillate in binding energy. The applied oscillation amplitude and frequency can accelerate reactions orders of magnitude above the catalytic rates of static systems, provided the active site dynamics are tuned to the natural frequencies of the surface chemistry. In this work, differences in the characteristics of parallel reactions are exploited via selective application of active site dynamics (0 < ΔU < 1.0 eV amplitude, 10-6 < f < 104 Hz frequency) to control the extent of competing reactions occurring on the shared catalytic surface. Simulation of multiple parallel reaction systems with broad range of variation in chemical parameters revealed that parallel chemistries are highly tunable in selectivity between either pure product, even when specific products are not selectively produced under static conditions. Two mechanisms leading to dynamic selectivity control were identified: (i) surface thermodynamic control of one product species under strong binding conditions, or (ii) catalytic resonance of the kinetics of one reaction over the other. These dynamic parallel pathway control strategies applied to a host of chemical conditions indicate significant potential for improving the catalytic performance of many important industrial chemical reactions beyond their existing static performance.

Funding

Catalysis Center for Energy Innovation(CCEI)

Basic Energy Sciences

Find out more...

History

Email Address of Submitting Author

hauer@umn.edu

Institution

University of Minnesota

Country

United States of America

ORCID For Submitting Author

0000-0001-5810-1953

Declaration of Conflict of Interest

No Conflict of Interest

Version Notes

Version 1.0 - Original Submission

Exports

Read the published paper

in Chemical Science

Logo branding

Exports