Capturing the Supramolecular Association of Calixarenes onto Proteins Relying on Molecular Dynamics Simulations: The Case of Cytochrome C

27 February 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Here, we propose a molecular dynamics investigation of the supramolecular association of sulfonatedcalix-[8]-arenes to cytochrome c. The binding sites prone to interactions with sulfonated calixarenescan be identified without prior knowledge of the X-ray structure, and the binding free energiesestimated by molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) post-analysis arefound to be in neat agreement with the isothermal titration calorimetry (ITC) measurements The per-residuedecomposition reveals the detailed picture of this electrostatically-driven association and notably therole of the arginine R13 as a bridge residue between the two main anchoring sites. In addition,the analysis of the residue behavior by means of a supervised machine learning protocol unveils the formation of an hydrogen bond network far from the binding sites, increasing the rigidity of theprotein.

Keywords

molecular dynamics
Molecular Glue
Cytochrome c
calixarene 8

Supplementary materials

Title
Description
Actions
Title
calixarenes8 cytc si
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.