ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
3 files

Canvass: A Crowd-Sourced, Natural Product Screening Library for Exploring Biological Space

preprint
revised on 24.10.2018, 16:28 and posted on 24.10.2018, 16:29 by Sara E. Kearney, Gergely Zahoránszky-Kőhalmi, Kyle R. Brimacombe, Mark J. Henderson, Caitlin Lynch, Tongan Zhao, Kanny K. Wan, Zina Itkin, Christopher Dillon, Min Shen, Dorian M. Cheff, Tobie D. Lee, Danielle Bougie, Ken Cheng, Nathan P. Coussens, Dorjbal Dorjsuren, Richard T. Eastman, Ruili Huang, Michael J. Iannotti, Surendra Karavadhi, Carleen Klumpp-Thomas, Jacob S. Roth, Srilatha Sakamuru, Wei Sun, Steven A. Titus, Adam Yasgar, Ya-Qin Zhang, Jinghua Zhao, Rodrigo B. Andrade, M. Kevin Brown, Noah Z. Burns, Jin K. Cha, Emily E. Mevers, Jon Clardy, Jason A. Clement, Peter A. Crooks, Gregory D. Cuny, Jake Ganor, Jesus Moreno, Lucas A. Morrill, Elias Picazo, Robert B. Susick, Neil K. Garg, Brian C. Goess, Robert B. Grossman, Chambers C. Hughes, Jeffrey N. Johnston, Madeleine M. Joullié, A. Douglas Kinghorn, David G.I. Kingston, Michael J. Krische, Ohyun Kwon, Thomas J. Maimone, Susruta Majumdar, Katherine N. Maloney, Enas Mohamed, Brian T. Murphy, Pavel Nagorny, David E. Olson, Larry E. Overman, Lauren E. Brown, John K. Snyder, John A. Porco, Jr., Fatima Rivas, Samir A. Ross, Richmond Sarpong, Indrajeet Sharma, Jared T. Shaw, Zhengren Xu, Ben Shen, Wei Shi, Corey Stephenson, Alyssa L. Verano, Derek S. Tan, Yi Tang, Richard E. Taylor, Regan J. Thomson, David A. Vosburg, Jimmy Wu, William M. Wuest, Armen Zakarian, Yufeng Zhang, Tianjing Ren, Zhong Zuo, James Inglese, Sam Michael, Anton Simeonov, Wei Zheng, Paul Shinn, Ajit Jadhav, Matthew B. Boxer, Matthew D. Hall, Menghang Xia, Rajarshi Guha, Jason M. Rohde
Natural products and their derivatives continue to be wellsprings of nascent therapeutic potential. However, many laboratories have limited resources for biological evaluation, leaving their previously isolated or synthesized compounds largely or completely untested. To address this issue, the Canvass library of natural products was assembled, in collaboration with academic and industry researchers, for quantitative high-throughput screening (qHTS) across a diverse set of cell-based and biochemical assays. Characterization of the library in terms of physicochemical properties, structural diversity, and similarity to compounds in publicly available libraries indicates that the Canvass library contains many structural elements in common with approved drugs. The assay data generated were analyzed using a variety of quality control metrics, and the resultant assay profiles were explored using statistical methods, such as clustering and compound promiscuity analyses. Individual compounds were then sorted by structural class and activity profiles. Differential behavior based on these classifications, as well as noteworthy activities, are outlined herein. One such highlight is the activity of (–)-2(S)-cathafoline, which was found to stabilize calcium levels in the endoplasmic reticulum. The workflow described here illustrates a pilot effort to broadly survey the biological potential of natural products by utilizing the power of automation and high-throughput screening.

Funding

Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health

History

Email Address of Submitting Author

jason.m.rohde3.civ@mail.mil

Institution

National Center for Advancing Translational Sciences, National Institutes of Health

Country

USA

ORCID For Submitting Author

0000-0003-3187-3739

Declaration of Conflict of Interest

The authors declare that they have no competing interests.

Exports