These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
HN3_paper.pdf (2.61 MB)

Calculation of the Detonation State of HN3 with Quantum Accuracy

submitted on 04.09.2020 and posted on 07.09.2020 by Cong Huy Pham, Rebecca Lindsey, Laurence E. Fried, Nir Goldman
HN3 is a unique liquid energetic material that exhibits ultrafast detonation chemistry and a transition to metallic states during detonation. We combine the ChIMES many-body reactive force field and the extended-Lagrangian multiscale shock technique (MSST) molecular dynamics method to calculate the detonation properties of HN3 with the accuracy of Kohn-Sham density-functional theory. ChIMES is based on a Chebyshev polynomial expansion and can accurately reproduce density-functional theory molecular dynamics (DFT-MD) simulations for a wide range of unreactive and decomposition conditions of liquid HN3. We show that addition of random displacement configurations and the energies of gas-phase equilibrium products in the training set allows ChIMES to efficiently explore the complex potential energy surface. Schemes for selecting force field parameters and the inclusion of stress tensor and energy data in the training set are examined. Structural and dynamical properties, as well as chemistry predictions for the resulting models are benchmarked against DFT-MD. We demonstrate that the inclusion of explicit four-body energy terms is necessary to capture the potential energy surface across a wide range of conditions. The present force field, which was fit to a balance of forces, energies, and stress tensors yields excellent agreement with DFT, while exhibiting an orders-of-magnitude increase in computational efficiency over DFT-MD. Our results generally retain the accuracy of DFT-MD while yielding a high degree of computational efficiency, allowing simulations to approach orders of magnitude larger time and spatial scales. The techniques and recipes for MD model creation we present allow for direct simulation of nanosecond shock compression experiments and calculation of the detonation properties of materials with the accuracy of Kohn-Sham density-functional theory.


Email Address of Submitting Author


Lawrence Livermore National Laboratory


United States

ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of Interest