ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

Bond-Length Distributions for Ions Bonded to Oxygen: Results for the Transition Metals and Quantification of the Factors Underlying Bond-Length Variation in Inorganic Solids

preprint
revised on 20.02.2020, 04:11 and posted on 20.02.2020, 10:01 by Olivier Charles GagnΓ©, Frank Christopher Hawthorne
Bond-length distributions are examined for 63 transition-metal ions bonded to O2- in 147 configurations, for 7522 coordination polyhedra and 41,488 bond distances, providing baseline statistical knowledge of bond lengths for transi-tion metals bonded to O2-. A priori bond valences are calculated for 140 crystal structures containing 266 coordination poly-hedra for 85 transition-metal ion configurations with anomalous bond-length distributions. Two new indices, Ξ”π‘‘π‘œπ‘π‘œπ‘™ and Ξ”π‘π‘Ÿπ‘¦π‘ π‘‘, are proposed to quantify bond-length variation arising from bond-topological and crystallographic effects in extended solids. Bond-topological mechanisms of bond-length variation are [1] non-local bond-topological asymmetry, and [2] multi-ple-bond formation; crystallographic mechanisms are [3] electronic effects (with inherent focus on coupled electronic-vibra-tional degeneracy in this work), and [4] crystal-structure effects. The Ξ”π‘‘π‘œπ‘π‘œπ‘™ and Ξ”π‘π‘Ÿπ‘¦π‘ π‘‘ indices allow one to determine the primary cause(s) of bond-length variation for individual coordination polyhedra and ion configurations, quantify the dis-torting power of cations via electronic effects (by subtracting the bond-topological contribution to bond-length variation), set expectation limits regarding the extent to which functional properties linked to bond-length variations may be optimized in a given crystal structure (and inform how optimization may be achieved), and more. We find the observation of multiple bonds to be primarily driven by the bond-topological requirements of crystal structures in solids. However, we sometimes observe multiple bonds to form as a result of electronic effects (e.g. the pseudo Jahn-Teller effect); resolution of the origins of multiple-bond formation follows calculation of the Ξ”π‘‘π‘œπ‘π‘œπ‘™ and Ξ”π‘π‘Ÿπ‘¦π‘ π‘‘ indices on a structure-by-structure basis. Non-local bond-topological asymmetry is the most common cause of bond-length variation in transition-metal oxides and oxysalts, followed closely by the pseudo Jahn-Teller effect (PJTE). Non-local bond-topological asymmetry is further suggested to be the most widespread cause of bond-length variation in the solid state, with no a priori limitations with regard to ion identity. Overall, bond-length variations resulting from the PJTE are slightly larger than those resulting from non-local bond-topological asym-metry, comparable to those resulting from the strong JTE, and less than those induced by Ο€-bond formation. From a compar-ison of a priori and observed bond valences for ~150 coordination polyhedra in which the strong JTE or the PJTE is the main reason underlying bond-length variation, the Jahn-Teller effect is found not to have a symbiotic relation with the bond-topo-logical requirements of crystal structures. The magnitude of bond-length variations caused by the PJTE decreases in the fol-lowing order for octahedrally coordinated d0 transition metals oxyanions: Os8+ > Mo6+ > W6+ >> V5+ > Nb5+ > Ti4+ > Ta5+ > Hf4+ > Zr4+ > Re7+ >> Y3+ > Sc3+. Such ranking varies by coordination number; for [4], it is Re7+ > Ti4+ > V5+ > W6+ > Mo6+ > Cr6+ > Os8+ >> Mn7+; for [5], it is Os8+ > Re7+ > Mo6+ > Ti4+ > W6+ > V5+ > Nb5+. We conclude that non-octahedral coordinations of d0 ion configurations are likely to occur with bond-length variations that are similar in magnitude to their octahedral counterparts. However, smaller bond-length variations are expected from the PJTE for non-d0 transition-metal oxyanions.

Funding

Banting post-doctoral fellowship, NSERC

PGS-D3 scholarship, NSERC

Carnegie post-doctoral fellowship, Carnegie Institution for Science

Discovery Grant, NSERC

a Canada Research Chair in Crystallography and Mineralogy, NSERC

History

Email Address of Submitting Author

ogagne@carnegiescience.edu

Institution

Carnegie Institution for Science

Country

United States

ORCID For Submitting Author

0000-0002-7902-8166

Declaration of Conflict of Interest

No conflict of interest

Exports