ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files
0/0

Biodegradable Hybrid Block Copolymer – Lipid Vesicles as Potential Drug Delivery Systems

preprint
submitted on 26.04.2019 and posted on 30.04.2019 by Sanobar Khan, James McCabe, Kathryn Hill, Paul Beales

The anticipated benefits of nano-formulations for drug delivery are well known: for nanomedicines to achieve this potential, new materials are required with predictive and tuneable properties. Excretion of excipients following delivery is advantageous to minimise the possibility of adverse effects; biodegradability to non-toxic products is therefore desirable. With this in mind, we aim to develop tuneable hybrid lipid-block copolymer vesicle formulations where the hydrophilic polymer block is polyethylene glycol (PEG), which has accepted biocompatibility, and the hydrophobic block of the polymer is biodegradable: polycaprolactone (PCL) or polylactide (PLA). We investigate five different block copolymers for the formation of 1:1 phospholipid:polymer hybrid vesicles, compare their properties to the appropriate unitary liposome (POPC) and polymersome systems and assess their potential for future development as nanomedicine formulations. The PEG-PCL polymers under investigation do not form polymersomes and exhibit poor colloidal and/or encapsulation stability in hybrid formulations with lipids. The properties of PEG-PLA hybrid vesicles are found to be more encouraging: they have much enhanced passive loading of a hydrophilic small molecule (carboxyfluorescein) compared to their respective polymersomes and exhibit more favourable release kinetics in the presence of serum compared to the liposome. Significantly, burst release from hybrid vesicles can be substantially reduced by making the polymer components of the hybrid vesicle a mixture containing 10 mol% of PEG16-PLA25 that is intermediate in size between the phospholipid and larger PEG45-PLA54 components. We conclude that hybrid lipid/PEG-PLA vesicles warrant further assessment and development as candidate drug delivery systems.

History

Email Address of Submitting Author

p.a.beales@leeds.ac.uk

Institution

University of Leeds

Country

UK

ORCID For Submitting Author

0000-0001-9076-9793

Declaration of Conflict of Interest

The authors declare no conflict of interest

Exports