These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
Lebedev_Ir_SAC_ITO_OER.pdf (6.17 MB)

Atomically-Dispersed Iridium on Indium Tin Oxide Efficiently Catalyzes Water Splitting

submitted on 13.02.2020, 23:36 and posted on 14.02.2020, 13:33 by Dmitry Lebedev, Roman Ezhov Ezhov, Javier Heras-Domingo, Aleix Comas Vives, Nicolas Kaeffer, Marc Willinger, Xavier Solans-Monfort, Huang Xing, Yulia Pushkar, Christophe Copéret
Heterogeneous catalysts in the form of atomically dispersed metals on a support provide the most efficient utilization of the active component, which is especially important for scarce and expensive late transition metals. These catalysts also enable unique opportunities to understand reaction pathways through detailed spectroscopic and computational studies. Here we demonstrate that atomically dispersed iridium sites on indium tin oxide prepared via surface organometallic chemistry display exemplary catalytic activity in one of the most challenging electrochemical processes, oxygen evolution reaction (OER). In situ X-ray absorption studies revealed the formation of IrV=O intermediate under OER conditions with an Ir–O distance of 1.83 Å. Modelling of the reaction mechanism indicates that Ir(V)=O is likely a catalyst resting state, which is subsequently oxidized to Ir(VI) enabling fast water nucleophilic attack and oxygen evolution. We anticipate that the applied strategy can be instrumental in preparing and studying a broad range of atomically dispersed transition metal catalysts on conductive oxides for (photo)electrochemical applications.


Email Address of Submitting Author


ETH Zurich



ORCID For Submitting Author


Declaration of Conflict of Interest

Authors declare no conflict of interest