ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
ChIMES-4_Active_Learning.pdf (3.52 MB)

Active Learning for Robust, High-Complexity Reactive Atomistic Simulations

preprint
submitted on 15.07.2020 and posted on 16.07.2020 by Rebecca Lindsey, Laurence E. Fried, Nir Goldman, Sorin Bastea
Machine learned reactive force fields based on polynomial expansions have been shown to be highly effective for describing simulations involving reactive materials. Nevertheless, the highly flexible nature of these models can give rise to a large number of candidate parameters for complicated systems. In these cases, reliable parameterization requires a well-formed training set, which can be difficult to achieve through standard iterative fitting methods. Here we present an active learning approach based on cluster analysis and Shannon information theory to enable semi-automated generation of informative training sets and robust machine learned force fields. Use of this tool is demonstrated for development of a model based on linear combinations of Chebyshev polynomials explicitly describing up to four-body interactions, for a chemically and structurally diverse system of C/O under extreme conditions. We show that this flexible training repository management approach enables development of models exhibiting excellent agreement with Kohn–Sham density functional theory (DFT) in terms of structure, dynamics, and speciation.

Funding

LLNL LDRD 17-ERD-011

History

Email Address of Submitting Author

lindsey11@llnl.gov

Institution

Lawrence Livermore National Laboratory

Country

United States of America

ORCID For Submitting Author

https://orcid.org/0000-0002-3438-9064

Declaration of Conflict of Interest

No conflict of Interest

Version Notes

Initial version

Exports