These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Ab Initio Molecular Dynamics Simulations of the Ferroelectric-Paraelectric Phase Transition in Sodium Nitrite

submitted on 14.02.2019, 11:55 and posted on 14.02.2019, 16:15 by Johannes P. Dürholt, Rochus Schmid
This paper reports on the first ab initio molecular dynamics study of the ferroelectric Sodium Nitrite, shedding light on its order-disorder phase transition. The remnant polarization Pr was calculated using a Mulliken population analysis and maximally localized Wannier functions. Especially the Wannier based model is in excellent agreement with experimental findings and previous Berry phase calculations. The simulations predict a ferroelectric Curie temperature Tc between 400 K and 450 K in good agreement with the experimental value of 437 K. In addition, the anomalous lattice behavior (shrinking of the c-axis) during the phase transition is reproduced. The crystal field effect in the material could be quantified by investigating the molecular dipoles based on the maximally localized Wannier functions and the intermolecular charge transfer by analysing the Mulliken charges. In agreement with earlier experimental and theoretical findings, the polarization reversal mechanism was found to be dominated by a c-axis rotation of the Nitrite ions. The molecular insight into such a simple and prototypical material serves as a basis for a further development of more complex crystalline order-disorder ferroelectrics.


Coordination Funds

Deutsche Forschungsgemeinschaft

Find out more...


Email Address of Submitting Author


Ruhr-Universität Bochum



ORCID For Submitting Author


Declaration of Conflict of Interest