ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
4 files

A Universal Deep Learning Framework based on Graph Neural Network for Virtual Co-Crystal Screening

preprint
submitted on 03.01.2021, 12:03 and posted on 05.01.2021, 04:45 by Yuanyuan Jiang, Jiali Guo, Yjing Liu, Yanzhi Guo, Menglong Li, Xuemei Pu

Cocrystal plays an important role in various fields. However, how to choose coformer remains a challenge on experiments. In this work, we develop a novel graph neural network (GNN) based deep learning framework to rapidly predict formation of the cocrystal. A large and reliable data set is first constructed, which contains 7871 samples. A complementary feature representation is proposed by combining molecular graph and molecular descriptors from priori knowledge. A new GNN learning architecture is then explored to effectively embed the priori knowledge into the “endto-end” learning on the molecular graph, in which multi-head attention mechanism is introduced to further optimize the feature space. Consequently, the performance of our model achieves 98.86% accuracy, greatly surpassing some traditional machine learning models and classic GNN models. Furthermore, the out-of-distribution prediction on energetic cocrystals is also high up to 97.11% accuracy, showing strong generalization.


History

Email Address of Submitting Author

2018322030006@stu.scu.edu.cn

Institution

Sichuan University

Country

China

ORCID For Submitting Author

https://orcid.org/0000-0001-8594-6046

Declaration of Conflict of Interest

no conflict of interest

Exports