These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

A Topological Stitching Strategy for Biocompatible Wet Adhesion Using Mussel-Inspired Polyurethane

submitted on 31.03.2021, 07:06 and posted on 01.04.2021, 10:30 by Buyun Chen, Kun Lei, Dandan Zhu, Chongchong Yang, Chengyuan Sun, Wei Xiao, Zhen Zheng, Xinling Wang
The biomedical and surgical applications of hydrogels demand effective methods to adhere hydrogels to diverse substrates including living tissues. Here we present a mussel mimetic polyurethane as topological suture material for tough adhesion of hydrogels by introducing catechol moieties into polymer chains. Solution of the stitching polyurethane can be injected onto the surface of a hydrogel, followed by diffusing spontaneously into the hydrogel, then get triggered by oxidant for in situ gelation. Oxidative cross-linkage of catechol-modified polyurethane after penetration into hydrogels or living tissues could establish enough covalently entangled networks to afford desired adhesion strength. The mussel mimetic polyurethane demonstrates excellent adhesion strength of hydrogels to universal substrates including inorganics, polymers, and biomaterials, with no requirements for specific functional groups or chemical modification. The adhesion energy achieved by the topological stitching strategy can reach up to 350 J/m2. Moreover, the stitching polymer shows good biocompatibility and the potential for debonding under the catalysis of elastase. This work will possibly become a promising strategy candidate for adhesion in wet environments.


National Nature Science Foundation of China (22075177)


Email Address of Submitting Author


Shanghai Jiao Tong University



ORCID For Submitting Author


Declaration of Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.