ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

A Pressure Swing Approach to Selective CO2 Sequestration Using Functionalised Hypercrosslinked Polymers

preprint
submitted on 24.09.2019 and posted on 27.09.2019 by Alex James, Jake Reynolds, Dan Reed, Peter Styring, Robert Dawson

Functionalised hypercrosslinked polymers (HCPs) with surface areas between 213 – 1124 m2/g based on a range of monomers containing different chemical moieties are evaluated for CO2 capture using a pressure swing adsorption (PSA) methodology under humid conditions and elevated temperatures. The networks demonstrated rapid CO2 uptake reaching maximum uptakes in under 60 seconds. The most promising networks demonstrating the best selectivity and highest uptakes were applied to a pressure swing setup using simulated flue gas streams. The carbazole, triphenylmethanol and triphenylamine networks were found to be capable of converting a dilute CO2 stream (> 20 %) into a concentrated stream (> 85 %) after only two pressure swing cycles from 20 bar (adsorption) to 1 bar (desorption). This work demonstrates the ease by which readily synthesised functional porous materials can be successfully applied to a pressure swing methodology and used to separate CO2 from N2 from industrially applicable simulated gas streams under more realistic conditions.


Funding

EP/K007947/1

EP/P026435/1

History

Email Address of Submitting Author

r.dawson@sheffield.ac.uk

Institution

University of Sheffield

Country

United Kingdom

ORCID For Submitting Author

0000-0003-4689-4428

Declaration of Conflict of Interest

No conflicts of interest

Exports

Logo branding

Exports