ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files

A Model for the Simulation of the CnEm Nonionic Surfactant Family Derived from Recent Experimental Results

preprint
submitted on 09.07.2020 and posted on 09.07.2020 by Michael Johnston, Andrew Duff, Richard L. Anderson, William Swope

Using a comprehensive set of recently published experimental results for training and validation, we have developed computational models appropriate for simulations of aqueous solutions of poly(ethylene oxide) alkyl ethers, an important class of micelle- forming nonionic surfactants, usually denoted CnEm. These models are suitable for use in simulations that employ a moderate amount of coarse graining and especially for dissipative particle dynamics (DPD), which we adopt in this work.


The experimental data used for training and validation were reported earlier and produced in our laboratory using dynamic light scattering (DLS) measurements per- formed on twelve members of the CnEm compound family yielding micelle size dis- tribution functions and mass weighted mean aggregation numbers at each of several surfactant concentrations. The range of compounds and quality of the experimental results were designed to support the development of computational models. An es- sential feature of this work is that all simulation results were analysed in a way that is consistent with the experimental data. Proper account is taken of the fact that a broad distribution of micelle sizes exists, so mass weighted averages (rather than num- ber weighted averages) over this distribution are required for the proper comparison of simulation and experimental results.


The resulting DPD force field reproduces several important trends seen in the exper- imental critical micelle concentrations and mass averaged mean aggregation numbers with respect to surfactant characteristics and concentration. We feel it can be used to investigate a number of open questions regarding micelle sizes and shapes and their dependence on surfactant concentration for this important class of nonionic surfactants.

Funding

This work was supported by the STFC Hartree Centre’s Innovation: Return on Research programme, funded by the Department for Business, Energy & Industrial Strategy

History

Email Address of Submitting Author

michaelj@ie.ibm.com

Institution

IBM

Country

Ireland

ORCID For Submitting Author

0000-0003-1337-440X

Declaration of Conflict of Interest

None

Version Notes

Initial vision

Exports