ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

A Lattice Dynamical Approach for Finding the Lithium Superionic Conductor Li3ErI6

preprint
submitted on 16.01.2020 and posted on 20.01.2020 by Roman Schlem, Tim Bernges, Cheng Li, Marvin Kraft, Nicolo Minafra, Wolfgang Zeier

Driven by the increasing attention that the superionic conductors Li3MX6 (M = Y, Er, In, La; X = Cl, Br, I) have gained recently for the use of solid-state batteries, and the idea that a softer, more polarizable anion sublattice is beneficial for ionic transport, here we report Li3ErI6, the first experimentally-obtained iodine-based compound within this material system of ionic conductors. Using a combination of synchrotron and neutron diffraction, we elucidate the structure, the lithium positions and possible diffusion pathways of Li3ErI6. Temperature-dependent impedance spectroscopy shows low activation energies of 0.37 and 0.38 eV alongside promising ionic conductivities of 0.65 mS·cm-1 and 0.39 mS·cm-1directly after ball milling and the subsequently annealed Li3ErI6, respectively. Speed of sound measurements are used to determine the Debye frequency of the lattice as a descriptor of the lattice dynamics and overall lattice softness, and Li3ErI6 is compared to the known material Li3ErCl6. The softer, more polarizable framework from the iodide anion leads to improved ionic transport, showing that the idea of softer lattices holds up in this class of materials. This work provides Li3ErI6 as an interesting novel framework for optimization in the class of halide-based ionic conductors.

History

Email Address of Submitting Author

wolfgang.g.zeier@pc.jlug.de

Institution

Justus-Liebig-University Giessen

Country

Germany

ORCID For Submitting Author

0000-0001-7749-5089

Declaration of Conflict of Interest

none

Exports

Read the published paper

in ACS Applied Energy Materials

Logo branding

Exports