These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
main chemrxiv.pdf (1.87 MB)

A Heavily Substituted Manganite in an Ordered Nanocomposite for Long-Term Energy Applications

submitted on 18.01.2021, 11:38 and posted on 19.01.2021, 13:31 by Federico Baiutti, Francesco Maria Chiabrera, Matias Acosta, David R. Diercks, David Parfitt, José Santiso, Xuejing Wang, Andrea Cavallaro, Alex Morata, Alexander Chroneos, Judith L. MacManus-Driscoll, Albert Tarancón, Haiyan Wang
The implementation of nano-engineered composite oxides opens up the way towards the development of
a novel class of superior energy materials. Vertically aligned nanocomposites are characterized by a
coherent, dense array of vertical interfaces, which allows for the extension of local effects to the whole
volume of the material. Here, we use such a unique architecture to fabricate highly electrochemically
active nanocomposites of lanthanum strontium manganite and doped ceria with unprecedented stability
and straight applicability as functional layers in solid state energy devices. Direct evidence of synergistic
local effects for enhancing the electrochemical performance, stemming from the highly ordered phase
alternation, is given here for the first time using atom-probe tomography combined with oxygen isotopic
exchange. Interface-induced cationic substitution, enabling lattice stabilization, is presented as the origin
of the observed long-term stability. These findings reveal a novel route for materials nano-engineering
based on the coexistence between local disorder and long-range arrangement.


Energy HarveStorers for Powering the Internet of Things

European Commission

Find out more...


Email Address of Submitting Author





ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict to declare

Version Notes

v1 - before review