ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

A General Approach to Deboronative Radical Chain Reaction with Pinacol Alkylboronic Esters

preprint
submitted on 27.02.2020 and posted on 27.02.2020 by Emy André-Joyaux, Andrey Kuzovlev, Nicholas D. C. Tappin, Philippe Renaud
The generation of carbon-centered radicals from air-sensitive organoboron compounds via nucleohomolytic substitution at boron is one of the most general methods to generate non-functionalized and functionalized radicals. Due to their reduced Lewis acidity, the very popular, air-stable, and readily available alkylboronic pinacol esters are not suitable substrates for this process. Herein, is reported their in situ conversion to alkylboronic catechol esters by boron-transesterification with a substoichiometric amount of catechol methyl borate (MeO–Bcat) telescoped onto a wide array of radical chain processes. This simple one-pot, radical-chain, deboronative protocol allows for the conversion of pinacol boronic esters into iodides, bromides, chlorides, and thioethers. The process is also suitable the formation of nitriles and allylated compounds via C–C bond formation using sulfonyl radical traps. Finally, a particularly mild protocol for the protodeboronation of pinacol boronic esters is given. The power of combining radical and classical boron chemistry, is illustrated with a highly modular 5-membered ring formation using a combination of a three-component coupling reaction and a protodeboronative cyclization.

Funding

Swiss National Science Foundation (Project 200020_172621)

History

Email Address of Submitting Author

philippe.renaud@dcb.unibe.ch

Institution

University of Bern

Country

Switzerland

ORCID For Submitting Author

0000-0002-9069-7109

Declaration of Conflict of Interest

No conflict of interest

Exports