These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

A Computational Study of Direct CO2 Hydrogenation to Methanol on Pd Catalysts

submitted on 15.04.2021, 13:27 and posted on 16.04.2021, 05:24 by Igor Kowalec, Lara Kabalan, Richard Catlow, Andrew Logsdail

We investigate the mechanism of direct CO2 hydrogenation to methanol on Pd (111), (100) and (110) surfaces using density functional theory (DFT), providing insight into the reactivity of CO2 on Pd-based catalysts. The initial chemisorption of CO2, forming a partially charged CO2δ-, is weakly endothermic on a Pd (111) surface, with an adsorption energy of 0.06 eV, and slightly exothermic on Pd (100) and (110) surfaces, with adsorption energies of -0.13 and -0.23 eV, respectively. Based on Mulliken analysis, we attribute the low stability of CO2δ- on the Pd (111) surface to a negative charge that accumulates on the surface Pd atoms interacting directly with the CO2δ- adsorbate. For the reaction of the adsorbed species on the Pd surface, HCOOH hydrogenation to H2COOH is predicted to be the rate determining step of the conversion to methanol in all cases, with activation barriers of 1.35, 1.26, and 0.92 eV on Pd (111), (100) and (110) surfaces, respectively.


Email Address of Submitting Author


Cardiff University


United Kingdom

ORCID For Submitting Author


Declaration of Conflict of Interest

No conflict of interest.

Version Notes

Pre-print with SI, version 1.