ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
0/0

AP-Net: An Atomic-Pairwise Neural Network for Smooth and Transferable Interaction Potentials

preprint
submitted on 05.05.2020 and posted on 06.05.2020 by Zachary Glick, Derek Metcalf, Alexios Koutsoukas, Steven Spronk, Daniel Cheney, David Sherrill

Intermolecular interactions are critical to many chemical phenomena, but their accurate computation using ab initio methods is often limited by computational cost. The recent emergence of machine learning (ML) potentials may be a promising alternative. Useful ML models should not only estimate accurate interaction energies, but also predict smooth and asymptotically correct potential energy surfaces. However, existing ML models are not guaranteed to obey these constraints. Indeed, systemic deficiencies are apparent in the predictions of our previous hydrogen-bond model as well as the popular ANI-1X model, which we attribute to the use of an atomic energy partition. As a solution, we propose an alternative atomic-pairwise framework specifically for intermolecular ML potentials, and we introduce AP-Net—a neural network model for interaction energies. The AP-Net model is developed using this physically motivated atomic-pairwise paradigm and also exploits the interpretability of symmetry adapted perturbation theory (SAPT). We show that in contrast to other models, AP-Net produces smooth, physically meaningful intermolecular potentials exhibiting correct asymptotic behavior. Initially trained on only a limited number of mostly hydrogen-bonded dimers, AP-Net makes accurate predictions across the chemically diverse S66x8 dataset, demonstrating significant transferability. On a test set including experimental hydrogen-bonded dimers, AP-Net predicts total interaction energies with a mean absolute error of 0.37 kcal mol−1, reducing errors by a factor of 2-5 across SAPT components from previous neural network potentials. The pairwise interaction energies of the model are physically interpretable, and an investigation of predicted electrostatic energies suggests that the model ‘learns’ the physics of hydrogen-bonded interactions.

Funding

Bristol Myers Squibb

National Science Foundation (NSF): CHE-1566192

Department of Energy (DOE): AL-18-380-057

History

Email Address of Submitting Author

zlg@gatech.edu

Institution

Georgia Institute of Technology

Country

United States

ORCID For Submitting Author

0000-0003-0900-2849

Declaration of Conflict of Interest

None

Exports