Visualization of Very Large High-Dimensional Data Sets as Minimum Spanning Trees

20 November 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The chemical sciences are producing an unprecedented amount of large, high-dimensional data sets containing chemical structures and associated properties. However, there are currently no algorithms to visualize such data while preserving both global and local features with a sufficient level of detail to allow for human inspection and interpretation. Here, we propose a solution to this problem with a new data visualization method, TMAP, capable of representing data sets of up to millions of data points and arbitrary high dimensionality as a two-dimensional tree (http://tmap.gdb.tools). Visualizations based on TMAP are better suited than t-SNE or UMAP for the exploration and interpretation of large data sets due to their tree-like nature, increased local and global neighborhood and structure preservation, and the transparency of the methods the algorithm is based on. We apply TMAP to the most used chemistry data sets including databases of molecules such as ChEMBL, FDB17, the Natural Products Atlas, DSSTox, DrugBank, as well as to the MoleculeNet benchmark collection of data sets. We also show its broad applicability with further examples from biology, particle physics, and literature.

Keywords

visualization
nearest-neighbor
GDB
ChEMBL
chemical space analysis
Chemical Space Visualization
Searching algorithms
Biology
Natural language processsing
PDB database

Supplementary materials

Title
Description
Actions
Title
manuscript mstmap daniel probst v8 si
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.