Unraveling the Improved ORR Activities in Pt/TiO2/C Hybrids: The Role of Pt Morphology and Reactive Surface Species

29 October 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Further improvements and mechanistic understanding of the electrocatalytic enhancements towards the oxygen reduction reaction (ORR) are required to meet cost/energy demands and thus enable their practical applications in polymer electrolyte fuel cells. An investigation of the electrocatalytic enhancement mechanisms and stability of controlled electrocatalysts comprised Pt nanoparticles supported on TiO2/C materials was herein performed. The catalysts were prepared by depositing Pt, over the surface of TiO2 colloidal spheres. These materials were then supported onto Vulcan carbon to produce Pt/TiO2/C. The effect of Pt coverage at the TiO2 surface as well as the Pt/TiO2 loading on carbon over their ORR activity and stability were investigated. Results indicate that the control over Pt coverage at the surface played a pivotal role on activity optimization, in which an association between Pt content at the TiO2 surface and ORR activity was established. The ORR activity and stability were superior as compared to commercial Pt/C (E-TEK). Variations in catalytic activity could be correlated with the morphological features and with the concentration of surface reactive groups. Results described herein suggest that the understanding of the electrocatalytic enhancement mechanism together with the controlled synthesis of Pt-based nanomaterials may lead to tailored surface properties and thus ORR activities.

Keywords

oxygen reduction reaction
controlled synthesis
electrocatalysis
Pt
TiO2

Supplementary materials

Title
Description
Actions
Title
Camargo Pt-TiO2-C 26-10-2018 SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.