Time-Resolved Non-Invasive Metabolomic Monitoring of Microfluidic Spheroid And Monolayer Cell Cultures By NMR

20 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a quantitative NMR study comparing the metabolic activity in a spheroid and a monolayer of the same number of MCF-7 cells. Both cultures were carried out under hypoxic conditions on microfluidic devices with 2.5 µL sample volume. NMR spectra were obtained by periodically inserting the devices into a dedicated micro-NMR probe. The results demonstrate that quantitative, non-invasive metabolomic monitoring of microfluidic cultures with as few as 1250 individual cells is possible. Metabolite concentrations in the cultures were found to change linearly with time. The consumption rates of D-Glucose and the production rates of L-Lactic acid were approximately 2.5 times larger in the monolayer than in the spheroid. In contrast to the spheroids,
monolayers exhibited significant production of L-Alanine and L-Glutamine. Due to its non-invasive nature, metabolic monitoring by NMR can complement destructive fluorescent-based assays that are commonly used for read-out in microfluidic cultures.

Keywords

cell culture
microfluidic culture system
NMR spectrometry
Spheroid cell culture
single spheroid
metabolomic analysis

Supplementary materials

Title
Description
Actions
Title
2d-3d-chemRxiv-SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.