TheoDORE: a Toolbox for a Detailed and Automated Analysis of Electronic Excited State Computations

23 December 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The advent of ever more powerful excited-state electronic structure methods has lead to a tremendous increase in the predictive power of computation but it has also rendered the analysis of these computations more and more challenging and time-consuming. TheoDORE tackles this problem through providing tools for post-processing excited-state computations, which automate repetitive tasks and provide rigorous and reproducible descriptors. Interfaces are available for ten different quantum chemistry codes and a range of excited-state methods implemented therein. This article provides an overview of three popular functionalities within TheoDORE, a fragment-based analysis for assigning state character, the computation of exciton sizes for measuring charge transfer, and the natural transition orbitals used not only for visualisation but also for quantifying multiconfigurational character. Using the examples of an organic push-pull chromophore and a transition metal complex, it is shown how these tools can be used for a rigorous and automated assignment of excited-state character. In the case of a conjugated polymer, we venture beyond the limits of the traditional molecular orbital picture to uncover spatial correlation effects using electron-hole correlation plots and conditional densities.

Keywords

Excited states
Wavefunction analysis
Quantum chemistry
Excitons

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.