The Role of H-bonding in Phase Change Materials

27 November 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Phase change materials (PCMs) which melt in the temperature range of 100-230 °C, are a promising alternative for the storage of thermal energy. In this range, large amounts of energy available from solar-thermal, or other forms of renewable heat, can be stored and applied to domestic or industrial processes, or to an Organic Rankine Cycle (ORC) engine to generate electricity. The amount of energy absorbed is related to the latent heat of fusion (ΔHf) and is often connected to the extent of hydrogen bonding in the PCM. Herein, we report fundamental studies, including crystal structure and Hirshfeld surface analysis, of a family of guanidinium organic salts that exhibit high values of ΔHf, demonstrating that the presence and strength of H-bonds between ions plays a key role in this property.

Keywords

thermal energy storage
phase-change materials
ionic liquids
guanidinium salts
organic salts

Supplementary materials

Title
Description
Actions
Title
MX42 18 3
Description
Actions
Title
Supplementary information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.