The Photoisomerization Pathway(s) of Push-Pull Phenylazoheteroarenes

29 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Azoheteroarenes are the most recent derivatives targeted to further improve the properties of azo-based photoswitches. Their light-induced mechanism for trans-cis isomerization is assumed to be very similar to that of the parent azobenzene. As such, they inherited from the controversy about the dominant isomerization pathway (rotation vs. inversion) depending on the excited state (nπ* vs. ππ*). While the controversy seems settled in azobenzene, the extent to which the same conclusions apply to the more structurally-diverse family of azoheteroarenes is unclear. Here, we unravel by means of non-adiabatic molecular dynamics, the photoisomerization mechanism of three prototypical phenyl-azoheteroarenes with an increasing push-pull character. The evolution of the rotational and inversion conical intersection energies, the preferred pathway, and the associated kinetics upon both nπ* and ππ* excitations can be linked directly with the push-pull substitution effects. Overall, we clarify the working conditions of this family of azo-dyes and identify a possibility to exploit push-pull substituents to tune their photoisomerization quantum yield.


Keywords

Photoisomerization
Azoheteroarenes
surface-hopping dynamics method
conical intersection

Supplementary materials

Title
Description
Actions
Title
P2-ESI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.