The N-Terminal Helix-Turn-Helix Motif of Transcription Factors MarA and Rob Drives DNA Recognition

27 April 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

DNA-binding proteins play an important role in gene regulation and cellular function. The transcription factors MarA and Rob are two homologous members of the AraC/XylS family that regulate multidrug resistance. They share a common DNA-binding domain, and Rob possesses an additional C-terminal domain that permits binding of low-molecular weight effectors. Both proteins possess two helix-turn- helix (HTH) motifs capable of binding DNA; however, while MarA interacts with its promoter through both HTH-motifs, prior studies indicate that Rob binding to DNA via a single HTH-motif is sufficient for tight binding. In the present work, we perform microsecond time scale all-atom simulations of the binding of both transcription factors to different DNA sequences to understand the determinants of DNA recognition and binding. Our simulations characterize sequence-specific changes in the dynamical behavior upon DNA binding, showcasing the role of Arg40 of the N-terminal HTH-motif in allowing for specific tight binding. Finally, our simulations explain how an acidic C-terminal loop of Rob can control DNA binding mode. In doing so, we provide detailed molecular insight into DNA binding and recognition by these proteins, which in turn is an important step towards the efficient design of anti-virulence agents that target these proteins.

Keywords

protein-DNA recognition
Rob
MarA
molecular dynamics
conformational dynamics

Supplementary materials

Title
Description
Actions
Title
Kamerlin SupportingInformation
Description
Actions
Title
Supplementary movie1
Description
Actions
Title
Supplementary movie2
Description
Actions
Title
Supplementary movie3
Description
Actions
Title
Supplementary movie4
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.