The Formation of the Solid-/Liquid Electrolyte Interphase (SLEI) on NASICON-Type Glass Ceramics and LiPON

28 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Most electrochemical energy storages (battery cells) consist of solid electrodes separated by a liquid electrolyte (LE). If electrode materials are – at least partially – soluble in the electrolyte, detrimental mass transport between both electrodes (electrode cross-talk) occurs. The shuttle mechanism in lithium-sulfur batteries or leaching of Mn in high voltage cathode materials are important examples. Implementing a solid electrolyte (SE) membrane between the electrodes is a comprehensible approach to suppress undesired mass transport but additional resistances arise due to charge transport across the SE and charge transfer through the solid/liquid electrolyte interfaces. The latter contribution is often overlooked as its determination is challenging, however, these interface properties are crucial for practical application. In previous work a resistive solid-/liquid-electrolyte interphase “SLEI” was found at the interface between the SE lithium aluminum germanium phosphate (LAGP) in contact with a liquid ether-based electrolyte. Here we aim for deeper insight into this interphase formation, referring to a lithium ion conducting glass ceramic (NASICON-type) and the commonly used thin film ion conductor “LiPON” (lithium phosphorous oxide nitride). The growth of the SLEI is monitored by a combination of electrochemical characterization, XPS (x-ray photoelectron spectroscopy) and time-of flight secondary ion mass spectrometry (ToF-SIMS).

Keywords

solid electrolyte
liquid electrolyte
interface
interphase
post LIB
EIS

Supplementary materials

Title
Description
Actions
Title
Busche et al Formation Supplementary
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.