Synthetic Route of Trithiolato-Bridged Dinuclear Arene Ruthenium(II) Complexes [(η6-P-MeC6H4Pri)2Ru2(μ2-SR)3]+

17 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Several dinuclear trithiophenolato-bridged arene ruthenium complexes [(η6-p-MeC6H4Pri)2Ru2(μ2-SC6H4-R)3]+ could so far only be obtained with moderate yields using the synthetic route established in the early 2000s. With much less reactive aliphatic thiols or with bulky thiols, the reactions become even less efficient and the desired trithiolato complexes are obtained either only with bad yields or not at all. We employ density functional theory (DFT) calculations to gain a fundamental understanding of the reaction mechanisms leading to the formation of trithiolato complexes starting from the dichloro(p-cymene)ruthenium(II) dimer [(η6-p-MeC6H4Pri)Ru(μ2-Cl)Cl]2. The results of this DFT study enable us to rationalize experimental results and allow us, via a modified synthetic route, to synthesize the previously unreported and hitherto considered as unrealistic trithiolato complex [(η6-p-MeC6H4Pri)2Ru2(μ2-SC6H11)3]+. Our DFT study opens possibilities for the synthesis of so far inaccessible thiolato-bridged dinuclear arene ruthenium(II) complexes but more generally also the synthesis of other thiolato-bridged dinuclear group 8 and 9 metal com-plexes could be reexamined.

Keywords

thiolato-bridged dinuclear arene ruthenium complexes
synthetic route
density functional theory
reaction mechanisms
Kinetic measurements

Supplementary materials

Title
Description
Actions
Title
Rucomplexes SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.