Synthesis and Photochemical Properties of Re(I) Tricarbonyl Complexes Bound to Thione and Thiazole-2-ylidene Ligands

19 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Three Re(I) tricarbonyl complexes, with general formulation Re(N^L)(CO)3X (where N^L is a bidentate ligand containing a pyridine functionalized in the position 2 with a thione or a thiazol-2-ylidene group and X is either chloro or bromo) were synthesized and their reactivity explored in terms of solvent-dependent ligand substitution, both in the ground and excited states. When dissolved in acetonitrile, the complexes bound to the thione ligand underwent ligand exchange with the solvent resulting in the formation of Re(NCMe)2(CO)3X. The exchange was found to be reversible, and the starting complex was reformed upon removal of the solvent. On the other hand, the complexes appeared inert in dichloromethane or acetone. Conversely, the complex bound to the thiazole-2-ylidene ligand did not display any ligand exchange reaction in the dark, but underwent photoactivated ligand substitution when excited to its lowest metal-to-ligand charge transfer manifold. Photolysis of this complex in acetonitrile generated multiple products, including Re(I) tricarbonyl and dicarbonyl solvato-complexes as well as free thiazole-2-ylidene ligand.

Keywords

rhenium
N-heterocyclic carbenes
thione
photochemistry
photophysics

Supplementary materials

Title
Description
Actions
Title
supp info
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.