Surface and Catalyst Driven Singlet Oxygen Formation in Li-O2 Cells

Large overpotentials upon discharge and charge of Li-O2 cells have motivated extensive research into heterogeneous solid electrocatalysts or non-carbon electrodes with the aim to improve rate capability, round-trip efficiency and cycle life. These features are equally governed by parasitic reactions, which are now recognized to be caused by the highly reactive singlet oxygen (1O2). However, the link between the presence of electrocatalysts and 1O2 formation in metal-O2 cells is unknown. Here, we show that, compared to pristine carbon black electrodes, a representative selection of electrocatalysts or non-carbon electrodes (noble metal, transition metal compounds) may both slightly reduce or severely increase the 1O2 formation. The individual reaction steps, where the surfaces impact the 1O2 yield are deciphered, showing that 1O2 yield from superoxide disproportionation as well as the decomposition of trace H2O2 are sensitive to catalysts. Transition metal compounds in general are prone to increase 1O2.