Scalable One-Pot - Liquid-Phase Oligonucleotide Synthesis for Model Network Hydrogels

20 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Solid-phase oligonucleotide synthesis (SPOS) based on phosphoramidite chemistry is currently the most widespread technique for DNA and RNA synthesis, but suffers from scalability limitations and high reagent consumption. Liquid-phase oligonucleotide synthesis (LPOS) uses soluble polymer supports and has the potential of being scalable. However, at present, LPOS requires 3 separate reaction steps and 4-5 precipitation steps per nucleotide addition. Moreover, long acid exposure times during the deprotection step degrade sequences with high A-content (adenine) due to depurination and chain cleavage. In this work, we present the first one-pot liquid-phase DNA synthesis technique, which allows the addition of one nucleotide in a one-pot reaction of sequential coupling, oxidation and deprotection, followed by a single precipitation step. Furthermore, we demonstrate how to suppress depurination during the addition of adenine nucleotides. We showcase the potential of this technique to prepare high-purity 4-arm PEG‑T20 (T = thymine) and 4-arm PEG-A20building blocks in multi-gram scale. Such complementary 4-arm PEG-DNA building blocks reversibly self-assemble into supramolecular model network hydrogels, and facilitate the elucidation of bond lifetimes. These model network hydrogels exhibit new levels of mechanical properties, high stability at room temperature (melting at 44 ‎°C), and thus open up pathways to next-generation, scalable DNA-materials programmable through sequence recognition and available for macroscale applications.

Keywords

DNA hydrogels
liquid phase oligonucleotide synthesis
model networks
DNA materials
star polymers

Supplementary materials

Title
Description
Actions
Title
ESI final
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.