Revealing Solvent-Dependent Folding Behavior of Mycolic Acids from Mycobacterium Tuberculosis by Advanced Simulation Analysis

27 September 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Mycobacterium tuberculosis remains a persistent pathogen, partly due to its lipid rich cell wall, of which mycolic acids (MAs) are a major component. The fluidity and conformational flexibilities of different MAs in the bacterial cell wall significantly influence its properties, function, and observed pathogenicity, thus a proper conformational description of different MAs in different environments (e.g. in vacuum, in solution, in monolayers) can inform about their potential role in the complex setup of the bacterial cell wall. Previously, we have shown that molecular-dynamics (MD) simulations of MA folding in vacuocan be used to characterise MA conformers in seven groupings relating to bending at the functional groups (W, U and Z-conformations). Providing a new OPLS-based forcefield parameterisation for the critical cyclopropyl group of MAs and extensive simulations in explicit solvents (TIP4P water, hexane) we now present a more complete picture of MA folding properties together with improved simulation analysis techniques. We show that the ‘WUZ’ distance-based analysis can be used pinpoint conformers with hairpin bends at the functional groups, with these conformers constituting only a fraction of accessible conformations. Applying principle component analysis (PCA) and refinement using free energy landscapes (FELs), we are able to discriminate a complete and unique set of conformational preferences for representative alpha-, methoxy-, and keto-MAs, with overall preference for folded conformations. A control backbone-MA without any mero-chain functional groups showed significantly less folding in the mero-chain, confirming the role of functionalisation in directing folding. Keto-MA showed the highest percentage of WUZ-type conformations and, in particular, a tendency to fold at its alpha-methyl trans-cyclopropane group, in agreement with results from Villeneuve et al.MAs demonstrate similar folding in vacuum and water, with a majority of folded conformations around the W-conformation, although the molecules are more flexible in vacuum than in water. Exchange between conformations, with a disperse distribution that includes unfolded conformers, is common in hexane for all MAs, although with more organisation for Keto-MA. Globular, folded conformations are newly defined and may be specifically relevant in biofilms.

Keywords

mycolic acids
Free Energy Landscapes
Conformational Analysis Techniques
mycobacterium tuberculosis
lipid folding
molecular dynamics simulations

Supplementary materials

Title
Description
Actions
Title
ESI RMA AdvSim
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.