Real-Time in situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Gold

21 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Rational nanoparticle design is one of the main goals of materials science, but it can only be achieved via a thorough understanding of the growth process and of the respective roles of the molecular species involved. We demonstrate that a combination of complementary techniques can yield novel information with respect to their individual contributions. We monitored the growth of long aspect ratio silver rods from gold pentatwinned seeds by three in situ techniques (small-angle x-ray scattering, optical absorbance spectroscopy and liquid-cell transmission electron microscopy). Exploiting the difference in reaction speed between the bulk synthesis and the nanoparticle formation in the TEM cell, we show that the anisotropic growth is thermodynamically controlled (rather than kinetically) and that ascorbic acid, widely used for its mild reductive properties plays a shape-directing role, by stabilizing the {100} facets of the silver cubic lattice, in synergy with the halide ions. This approach can easily be applied to a wide variety of synthesis strategies.

Keywords

nanoparticle growth mechanisms
Time-Resolved SAXS
UV-vis spectroscopy
Liquid-Cell Transmission Electron Microscopy

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Actions
Title
Video 1
Description
Actions
Title
Video 2
Description
Actions
Title
Video 3
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.