Pore-Steric Photocatalytic Enhancement in Isoreticular Rod-Packed Titania Metal-Organic Frameworks

Titania metal-organic frameworks (MOFs) are attractive materials for noble-metal-free heterogeneous photocatalysis because of their tunable photoredox activity. In this work, we present the effect of decreased pore-steric interference in photocatalysis by creating a new series of MOFs via isoreticular expansion. These new UCFMOFs pack in a hex rod net, are composed of 1-dimensional titania secondary building units and organic links of increased metrics, exhibiting pore apertures with expanded sizes and increased photocatalytic kinetics. Powder based crystallography, in tandem with local structure, gas adsorption, and DFT studies, enabled elucidation of their crystal, steric, and electronic structures that explain their increased photocatalytic efficiency towards mild oxidation of organic probes.