Plasmonic Stamps Fabricated by Gold Dewetting on PDMS for Catalyzing Hydrosilylation on Silicon Surfaces

22 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work plasmonic stamps are harnessed to drive surface chemistry on silicon. The plasmonic stamps were prepared by sputtering gold films on PDMS, followed by thermal annealing to dewet the gold and form gold nanoparticles. By changing the film thickness of the sputtered gold, the approximate size and shape of these gold nanoparticles can be changed, leading to a shift of the optical absorbance maximum of the plasmonic stamp, from 535 nm to 625 nm. Applying the plasmonic stamp to a Si(111)-H surface using 1-dodecene as the ink, illumination with green light results in covalent attachment of 1-dodecyl groups to the surface. Of the dewetted gold films on PDMS used to make the plasmonic stamps, the thinnest three (5.0, 7.0, 9.2 nm) resulted in the most effective plasmonic stamps for hydrosilylation. The thicker stamps had lower efficacy due to the increased fraction of non-spherical particles, which have lower-energy LSPRs that are not excited by green light. Since the electric field generated by the LSPR should be very local, hydrosilylation on the silicon surface should only take place within close proximity of the gold particles on the plasmonic stamps.To complement AFM imaging of the hydrosilylated silicon surfaces, galvanic displacement of gold(III) salts on the silicon was carried out and the samples imaged by SEM - the domains of hydrosilylated alkyl chains would be expected to block the deposition of gold. The bright areas of metallic gold surround dark spots, with the sizes and spacing of these dark spots increasing with the size of the gold particles on the plasmonic stamps. These results underline the central role played by the LSPR in driving the hydrosilylation on silicon surfaces, mediated with plasmonic stamps.

Keywords

LSPR
hydrosilylation
plasmonics
silicon
dewetting
pattern transfer

Supplementary materials

Title
Description
Actions
Title
SI March21 PDF
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.