Pathway Complexity in Fuel-Driven DNA Nanostructures with Autonomous Reconfiguration of Multiple Dynamic Steady States

30 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We introduce pathway complexity on a multicomponent systems level in chemically fueled transient DNA polymerization system. The systems are based on a monomeric species pool that is fueled by ATP and orchestrated by an enzymatic reaction network (ERN) of ATP-powered ligation and concurrent cleavage. Such systems display autonomous evolution over multiple structural dynamic steady states from monomers to dimers, oligomer of dimers to ultimately randomized polymer structure before being ultimately degraded back to monomers once the fuel is consumed. The enabling key principle is to design monomer species having kinetically selected molecular recognition with respect to the structure-forming step (ATP-powered ligation) by encoding different sticky-end overhangs into the ligation area. However, all formed structures are equally degraded, and the orthogonal molecular recognition of the different starting species are harmonized during the constantly occurring restriction process, leading in consequence to a reconfiguration of the driven dynamic nanostructures on a higher hierarchical level. This non-equilibrium systems chemistry approach to pathway complexity provides new conceptual insights in fuel-driven automatons and autonomous materials design.

Keywords

non-equilibrium self-assembly
DNA Nanoscience
Chemical Reaction Networks
systems chemistry

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.