Optimised Conditions for the Palladium-Catalyzed Hydrogenolysis of Benzyl and Naphthylmethyl Ethers: Preventing Saturation of Aromatic Protecting Groups

26 March 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Whilst carrying out palladium catalysed hydrogenolysis to deprotect synthetic oligosaccharides, saturation of the benzyl and naphthylmethyl ether groups to their corresponding ether was observed. In order to suppress this unwanted hydrogenation, we report a scalable practical approach using a catalyst pre-treatment strategy, which is effective under batch or continuous flow conditions. This suppressed the unwanted hydrogenation side-products and created a selective catalyst for hydrogenolysis of benzyl and naphthylmethyl ethers. We demonstrate the efficient deprotection of a set of structurally diverse oligosaccharides (5 examples, >73%).

Keywords

Carbohydrate Chemistry
hydrogenolysis transformations

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.