Nickel-Catalyzed 1,2-Diarylation of Simple Alkenyl Amides

A nickel-catalyzed conjunctive cross-coupling of simple alkenyl amides with aryl iodides and aryl boronic esters is reported. The reaction is enabled by an electron-deficient olefin (EDO) ligand, dimethyl fumarate, and delivers the desired 1,2-diarylated products with excellent regiocontrol. Under optimized conditions, a wide range of amides derived from 3-butenoic acid, 4-pentenoic acid, and allyl amine are compatible substrates. This methodology represents the first example of regiocontrolled 1,2-diarylation directed by a native amide functional group. Computational analysis sheds light on potential substrate binding mode and the role of EDO ligand in the reductive elimination step.