Naturally Occurring Anthraquinones as Potential Inhibitors of SARS-CoV-2 Main Protease: A Molecular Docking Study

07 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Background: The novel coronavirus (COVID-19) has quickly spread throughout the globe, affecting millions of people. The World Health Organization (WHO) has recently declared this infectious disease as a pandemic. At present, several clinical trials are going on to identify possible drugs for treating this infection. SARS-CoV-2 Mpro is one of the most critical drug targets for the blockage of viral replication. Method: The blind molecular docking analyses of natural anthraquinones with SARS-CoV-2 Mpro were carried out in an online server, SWISSDOCK, which is based on EADock DSS docking software. Results: Blind molecular docking studies indicated that several natural antiviral anthraquinones could prove to be effective inhibitors for SARS-CoV-2 Mpro of COVID-19 as they bind near the active site having the catalytic dyad, HIS41 and CYS145 through non-covalent forces. The anthraquinones showed less inhibitory potential as compared to the FDA approved drug, remdesivir.

Conclusion: Among the natural anthraquinones, alterporriol Q could be the most potential inhibitor of SARS-CoV-2 Mpro among the natural anthraquinones studied here, as its ∆G value differed from that of remdesivir only by 0.51 kcal/ mol. The uses of these alternate compounds might be favorable for the treatment of the COVID-19.

Keywords

Remdesivir
anthraquinones
SARS-CoV-2 Mpro
COVID-19
molecular docking

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.