Melanogenesis: A Search for Pheomelanin and Also, What Is Lurking Behind Those Dark Colors?

2019-12-23T21:24:27Z (GMT) by Koen Vercruysse Venise Govan

We investigated the synthesis of melanin-like materials from DOPA, dopamine, norepinephrine and epinephrine in the presence of L-cysteine. We observed that L-cysteine delayed the formation of pigment from these catecholamines and that the presence of L-cysteine yielded darker-colored reaction mixtures. No reddish pigment was observed that would indicate the synthesis of pheomelanin-like material. The reactions were performed in the presence of Na2CO3 and through the addition of CaCl2 at the end of the reaction; the black, eumelanin-like material was co-precipitated with CaCO3. The remaining supernatant solutions were observed to be light-yellow to rusty-orange in color depending on the catecholamine used in the reaction. Size exclusion chromatography (SEC) analyses indicated that the removal of the black pigment left behind an oligomeric material that exhibited a strong absorbance band around 280nm. Our experimental and analytical observations prompt us to raise a number of points of discussion or hypotheses. 1) The presence of L-cysteine during the air-mediated oxidation of catecholamines leads to darker-colored pigments; not reddish or lighter-colored pigments that would visually resemble pheomelanin-like pigments, 2) SEC analyses suggested that the black pigment generated during the air-mediated oxidation of catecholamines is not necessarily the main reaction product, 3) The pre-formed, dark-colored pigments obtained through the air-mediated oxidative melanogenesis process can readily be deposited on insoluble mineral surfaces using an in situ co-precipitation procedure, 4) The air-mediated oxidation of catecholamines leads to a binary product that contains an insoluble, melanin-like substance and a soluble, oligo- or polymeric substance containing unoxidized precursor units, 5) The melanogenesis process leads to a binary product involving a non-covalently bonded combination of dark-colored pigment and a lighter-colored or colorless substance; the latter being understudied or ignored in the in vitro or in vivo studies of the melanogenesis process, 6) The kinetics of the melanogenesis process may determine the balance between insoluble and soluble components of the binary product generated; the slower the reaction the more dark-colored, insoluble pigment generated, 7) One should consider the possibility of intermolecularly, N-to-C, bonded units of catecholamines when evaluating the structure of melanins, polydopamines, etc. and 8) There is a need for a systematic study of the effect of amino acids (beyond just L-cysteine) and amines in general on the melanogenesis process.