Long-lived Triplet Excitons Formed by Exergonic Intramolecular Singlet Fission of an Adamantane-linked Tetracene Dyad

08 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An adamantane-linked tetracene dyad (Tc–Ad–Tc) undergoes exergonic intramolecular singlet fission (SF), producing longlived (τ = 175 μs) and high-energy (2 x 1.03 eV) multiexcitons. Timeresolved absorption, fluorescence decay, and electron paramagnetic resonance (EPR) spectroscopic analysis revealed that the long-lived triplet species is generated in this system via correlated triplet pair having singlet and quintet characteristics. Time-resolved EPR analysis revealed that conversion of 1(3Tc–Ad–3Tc)* -> 5(3Tc–Ad–3Tc)* requires small conformational dynamics accompanied by molecular motion. Analysis of the geometries of the quintet states shows that formation of the long-lived multiexciton is enabled by precise and close alignment of the tetracene moieties, which leads to their moderate interaction in the singlet excited state, while triplet–triplet annihilation is prevented by quintet generation. The presence of aliphatic linkages, like the rigid adamantane group, might enable effective conservation of intrinsic S1 and T1 levels of the original monomers, and moderate bridge-mediated σ–π interaction leading to exergonic intramolecular SF involving 1Tc*–Ad–Tc -> 1(3Tc–Ad–3Tc)*.

Keywords

singlet fission system
time-resolved EPR spectroscopy
Quintet States
Transient Absorption Spectroscopy

Supplementary materials

Title
Description
Actions
Title
190306 AdTc2SF si
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.