Ligand Field Effects on the Ground and Excited States of the Catalytically Active FeO2+ Species

22 August 2018, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We have performed high-level wave function theory calculations on bare FeO2+ and a series of non-heme Fe(IV)-oxo model complexes in order to elucidate the electronic properties and the ligand field effects on those channels. Our results suggest that a coordination environment formed by a weak field gives access to both competitive channels, yielding more reactive Fe(IV)-oxo sites. On the contrary, a strong ligand environment stabilizes only the σ-channel. Our concluding remarks will aid on the derivation of new structure-reactivity descriptors that can contribute on the development of the next generation of functional catalysts.

Keywords

Catalysis
Electronic Structure Theory
Fe(IV)-oxo

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.