Ionophore-Assisted Electrochemistry of Neutral Molecules: Oxidation of Hydrogen in an Ionic Liquid Electrolyte

27 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The electrochemical properties of gas molecules are of high interest for both fundamental and applied research. In this study, we introduce a novel concept to systematically alter the electrochemical behavior and, in particular, the redox potential of neutral gas molecules. The concept is based on the use of an ionophore to bind and stabilize the ionic electrochemical reaction product. We demonstrate that the ionophore-assisted electrochemical oxidation of hydrogen in a room temperature ionic liquid electrolyte is shifted by almost 1 V towards more negative potentials in comparison to an ionophore-free electrolyte. The altered electrochemical response in the presence of the ionophore yields insights into the reaction mechanism and can be used to determine the diffusion coefficient of the ionophore species. The ionophore-modulated electrochemistry of neutral gas molecules opens new avenues for the development of selective electrochemical sensors with reduced cross-sensitivity.

Keywords

Electrochemistry
Cyclic Voltammetry
Ionophore
Ionic Liquids
Hydrogen

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.